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The article presents a mechanism for information extraction from unstruc-
tured natural language data. The key feature of this mechanism is that it relies 
on deep syntactic and semantic analysis of the text. The system takes a col-
lection of syntactic-semantic dependency trees as input and, after process-
ing them, outputs an RDF graph consistent with certain domain ontology.

The mechanism was implemented within a deployable information extraction 
system, which is a part of ABBY Y Compreno technology—a powerful tool for 
a broad range of NLP-tasks that include machine translation, semantic search 
and text categorization. The description of the extraction algorithm and the 
results of the system performance evaluation are available in the article.

Evaluation tests were conducted on the MUC-6 corpus. The overall F‑measure 
we achieved using Compreno technology was 0.83, which is lower than the 
best results claimed by the researchers using machine learning approaches. 
Our system is still in development at the moment and we hope to improve its 
performance in the future. One of the advantages of Compreno technology 
is that, unlike many statistical approaches, it does not show an abrupt perfor-
mance drop if the test corpus is changed. Thus Compreno demonstrates little 
dependence on the exact textual data it receives and therefore might be seen 
as a more universal and less domain-dependent solution. Our tests on the 
CoNLL corpus yielded an F-measure of 0.75 with no prior adjustments made.

Key words: information extraction, named entity recognition, syntactic 
analysis, anaphora and coreference resolution, production rule systems

Introduction

The article describes an information extraction method which is the core of the 
data mining system that has been in development by ABBYY over the last three years. 
This system is an integral part of a more universal text analysis technology known 
as ABBYY Compreno. Its key feature is the ability to perform complete syntactic-se-
mantic analysis of the input text.

At the first stage a given input is analyzed by the Compreno parser [1]. The re-
sult is a collection of syntactic-semantic dependency-based parse trees (one tree per 
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sentence). Nodes and edges of each tree are augmented with diverse grammatical 
and semantic information. The parse tree forest is then used as input for a production 
system of information extraction rules. The application of the rules results in the for-
mation of an RDF graph consistent with a certain domain ontology.

In the first section of the article we provide a detailed description of the informa-
tion extraction mechanism. We describe the input data, the method used to represent 
extracted information, the structure of the extraction rules and the algorithm of their 
execution.

The approach we propose demonstrates two significant advantages. Firstly, the 
availability of syntactic and semantic structure allows us to extract facts1 as well 
as entities. Fact extraction rules that rely on the structure of syntactic-semantic trees 
tend to be laconic yet highly efficient, easily covering most natural language expres-
sions. Secondly, the system shows little dependence on a particular language. Since 
our parse trees contain language-independent data (like semantic roles or universal 
semantic classes), many extraction rules are universal and can be used for different 
languages.

Despite the fact that we use declarative rules in our system, our approach to in-
formation extraction cannot be described as a rule-based one, because the syntactic 
and semantic analysis that precedes the extraction is not based on a set of rules. The 
sort of analysis performed by the Compreno parser can be defined as model-based: 
it rests upon a multilevel model of natural language created by linguists and then cor-
pus-trained. Thus it is possible to consider our method hybrid, it being model-based 
at the first (preparatory) stage and rule-based at the second.

In the second part of the article we provide the results of the tests we conducted 
to evaluate our system’s performance. We used the MUC-6 corpus to run the tests and 
chose a standard set of information objects (Person, Organization, Location, Time and 
Date) for evaluation.

1.	 Information extraction mechanism

This section describes the logic behind the information extraction mechanism. 
In the first place, we introduce the basic concepts necessary for the description. Sec-
ondly, we give a description of the implemented algorithm.

1.1.	Input

The input accepted by the information extraction mechanism is a sequence 
of syntactic-semantic trees (one tree per sentence). These trees are generated by the 
Compreno parser during the analysis. Each tree is projective and its nodes in most 
cases correspond to the words of the respective sentence, although there are some 

1	 Currently the authors of this article are working on a new paper dedicated to fact extraction. 
That paper will describe the benefits our approach brings to this field of research.



A Production System for Information Extraction

	

null-nodes with no surface realization. Nodes and edges of a tree are augmented with 
grammatical and semantic information.

Detailed description of the linguistic model implemented within the Compreno 
parser is beyond the scope of this paper. More information about the system can 
be found in [14]. We will limit ourselves to a brief outline of the features that are most 
important in the context of information extraction.

1.	� Compreno technology is based on a universal semantic hierarchy. The hi-
erarchy is essentially a tree of IsA-relations with universal semantic classes 
as non-terminal interior nodes and language-dependent lexical classes 
as terminal leaf-nodes. Each node bears a set of semantic restrictions and 
syntactic constraints. These constraints as well as other properties can be in-
herited by hierarchy elements from their ancestor nodes. All the features 
that are present in an ancestor node are also present in its offspring unless 
explicitly stated otherwise.

2.	� Compreno morphological model exists outside the semantic hierarchy. For 
each language there is a list of lexemes2 and their paradigms. Within the 
hierarchy each lexeme can be attached to one or more lexical classes. A lexi-
cal class usually binds together several lexemes, for example “redeem” and 
“redemption”.

3.	� Each node of a parse tree is attached to a certain lexical class of the hierar-
chy, which implies that the parser performs word sense disambiguation in the 
course of analysis. The disambiguation algorithms exploit restrictions of the 
semantic hierarchy as well as co-occurrence statistics from parallel corpora.

4.	� Each node also stores grammatical and semantic information that defines its 
current role in the text (a set of grammemes and semantemes).

5.	� Each arc of a tree stores a surface slot (i.e. syntactic function of the depen-
dent node like $Subject or $Object_Direct) and a deep slot3 (i.e. semantic 
role of the dependent node like Agent or Experiencer). The set of deep slots 
is universal and language-independent, while sets of surface slots differ be-
tween particular languages.

6.	� Apart from the syntactic-semantic trees the Compreno parser provides the 
information about non-tree links between the nodes, such as coreference. 
For a sample sentence John stood up and shouted the parser will insert the 
omitted subject for the second verb and connect this reinstated node to the 
John node via a non-tree link. There are several other types of non-tree links 
aside from coreference. In some cases such links can connect nodes of dif-
ferent sentences—this is especially typical of pronominal anaphora, where 
antecedent is often found at a considerable distance from its anaphor. The 
importance of non-tree links for information extraction is demonstrated 
in the next section of the article.

2	 The term lexeme here is viewed as in traditional morphology. A lexeme combines different word 
forms of a word (or its paradigm). Different meanings of a word are not taken into account.

3	 The closest analogues of deep slots in the Western linguistics are Charles Fillmore’s ‘deep 
cases’ [4].
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It is important to note that the ultimate goal of Compreno is to convert text into 
a language-independent structure based entirely on universal elements of meaning, 
since the technology was initially developed (and is currently used) for machine trans-
lation4. Moreover, when we approach this particular task of information extraction, 
we also try to use the deep universal structure of text. This approach liberates our 
extraction rules from dependence on a particular language and gives them a broader 
range. However, in some situations we have to use surface syntactic structure in order 
to extract information efficiently. In both cases Compreno parse trees provide us with 
all the necessary information about syntax and semantics of the text.

Finally, there is a possibility for the information extraction module to address 
the input text directly regardless of the syntactic-semantic trees. For instance, if the 
input text had been marked with a predefined set of tags, the extraction system can 
take these tags into account, and there is a special operator for dealing with such tags 
in the extraction rules’ syntax.

1.2.	Extracted information

The output of the extraction mechanism is an RDF graph. The idea of RDF (Re-
source Definition Framework, [12]) is to assign each individual information object 
a unique identifier and store the information about it in the form of SPO triples. 
S stands for subject and contains the identifier of an object, P stands for predicate 
and identifies some property of an object, O stands for object and stores the value 
of that property. This value can be either a primitive data type (string, number, Bool-
ean value) or an identifier of another object.

All the RDF data is consistent with an OWL-DL5 ontology [10] which is predefined 
and static. Information about situations and events is stored in a way that is ideologi-
cally similar to that proposed by W3C consortium for defining N-ary relations [3]. 
The consistency of the extracted information with the domain model is a built-in fea-
ture of the system. It is secured, firstly, by the extraction rules syntax and, secondly, 
by validation procedures that prevent generation of ontologically inconsistent data.

In addition to RDF graph, extraction mechanism generates annotations, i.e. the 
information that links extracted entities to the respective parts of the original text. 
The combination of an RDF graph and annotation links will hereinafter be called 
an annotated RDF graph.

An annotated RDF graph is generated at the very final stage of the informa-
tion extraction process. Until that we use a more general structure to store extracted 
information during the process. This structure can be described as a set of noncontra-
dictory statements about information objects and their properties. Further on we will 
often call that a “bag of statements”. The number of statement types is finite, and 

4	 Theoretical prerequisites for the partition between the surface level and the deep level 
of syntactic structure representation can be found in [2] and [9].

5	 The OWL DL language subset that we use is similar to OWL Lite, but we also exploit Dis-
jointWith axiom.
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we describe them below. Running a few steps forward, we have to note that all the 
statements are generated by information extraction and identification rules.

However, the final annotated RDF graph can also be viewed as a bag of state-
ments, if each SPO triple and each link from an object to a segment of text is consid-
ered a statement about that object. Therefore it is important to point out the differ-
ence between our temporary information storage structure (the inner structure) and 
the final output in the form of an RDF graph.

The main distinction is that the statements from the inner structure can be used 
to create functional dependencies. For instance, we can state that a set of values 
of a certain object̀ s property should always contain a set of values of some other 
property of a different object. If the set of values of the second object is changed, the 
first object's property changes as well. We hereinafter refer to such statements (that 
use functional dependencies) as dynamic statements. Another difference of the inner 
structure is that it may contain some auxiliary statements that do not comply with the 
final annotated RDF graph structure and are used only during the extraction process.

The bag of statements has several important properties:
1.	 Cumulativity. Statements can be added to but not removed from the bag.
2.	 �Consistency. All the statements in the bag are non-contradictory to each 

other6.
3.	 �Consistency with ontology. The bag of statement can anytime be converted 

into an annotated RDF graph consistent with certain ontology.
4.	� Transactionality. Statements are added in groups, and if any statement 

of a group contradicts other statements from the bag, the addition of the 
whole group is cancelled.

Here is the list of statement types:

1.	 Existence statements
Existence statements proclaim the existence of information objects and assign 

unique identifiers to them.

2.	 Class membership statements
Statements that attribute objects to classes in the ontology. OWL allows us to at-

tribute a single object to several classes, so there can be more than one class member-
ship statement in the bag. The only restriction is that the classes should be consistent 
with each other, i.e. there should not be a DisjointWith statement blocking the com-
bination of classes. The system checks for disjoint every time statements are added 
to the bag and prevents inconsistencies.

Class membership statements can be dynamic: we can state that an object is at-
tributed to the same set of classes as some other object.

6	 Some examples of unallowable contradictions can be found further in the article
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3.	 Property statements
Statements that define properties of objects. With a property statement we can 

assert that a set of values of an object̀ s property includes some particular value. 
To comply with the RDF standard it can be either an identifier of a different object 
or a primitive data type (a string, a number or a Boolean value). In our system we also 
use parse tree node identifiers as property values (an additional primitive data type). 
Properties of this sort are only used during the extraction process but do not appear 
in the final RDF graph.

Property statements can be dynamic. The complexity of functions that calcu-
late values of objects from certain properties of other objects can vary. The simplest 
example is a function that copies values (i.e. it makes a statement that a set of values 
of some property of an object includes all the values of some other property of a differ-
ent object). A complex example is a function that generates a normalized string from 
a set of parse tree nodes. This function relies on Compreno text generation module.

Together several statements of some property of an object can create ontological 
inconsistencies. For instance, the number of values may exceed the maximal cardinal-
ity of that property. Our module prevents such inconsistencies by rejecting any group 
of statements that provokes contradiction.

4.	 Annotation statements
Annotation statements connect information objects to parts of the original input text. 

Annotation coordinates are calculated from the bounds of syntactic-semantic tree nodes. 
Annotation can cover either a single node (i.e. a word), or a full subtree of that node.

The bag of statements can contain a number of annotation statements. This 
means that an annotation of an object can consist of more than one segment (i. e. 
be discontinuous)7.

Annotation statements can be dynamic. For instance, an annotation can be cop-
ied from a different object or be generated from a set of values of a certain property 
if these values contain links to parse tree nodes8.

Annotation statements cannot create any contradictions.

5.	 Anchor statements
Anchor statements are a very important part of our information extraction mech-

anism. Statements of this type link information objects to parse tree nodes, which en-
ables us to access these objects later during the extraction process. The term ‘anchor’ 
was coined when the system was in development so that the links between objects and 

7	 The information extraction module has a special built-in algorithm that optimizes the set 
of segments linked to an information object immediately before the final annotated RDF 
graph is generated. This algorithm deletes embedded segments and in some cases merges 
contiguous segments into one.

8	 The second capability considerably simplifies operations with object annotations since it al-
lows us to store parse tree nodes as values of auxiliary properties while different rules ex-
tract different parts of the same object. We do not have to intentionally expand the annota-
tion in any of the rules—it extends automatically.
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tree nodes could be easily referred to. One object can be anchored to a set of nodes via 
a number of anchor statements.

The interpreter of the information extraction rules (which we describe later in the 
article) deals with these anchors in a special way: the left-hand side (or condition side) 
of a rule in our system can contain the so-called object conditions, which imply that 
an information object of a certain type must be assigned (anchored) to a certain parse 
tree node for the successful application of the rule. If such an object is found it can 
be accessed and modified during the application of the right-hand side of the rule.

Object conditions are most widely used in the rules that extract facts, but they 
are quite useful with named entities as well, since they make it possible to break the 
extraction of entities of particular type down to several simple stages. For instance, 
one rule might only create an unspecified Person entity, while the following ones add 
properties like first name, surname, middle name and alike. It has also become quite 
common to create auxiliary objects which serve as dynamic labels of parse tree nodes. 
First some rules create these auxiliary objects and anchor them to certain nodes, and 
then other rules check for the presence of these objects with the help of object condi-
tions in their left-hand sides.

An anchor statement can attach an anchor not only to the explicitly indicated node, 
but also to all its coreferring nodes (via non-tree links of syntactic-semantic trees). This 
possibility is crucially important for the recall of fact extraction, since the extracted in-
formation objects are automatically linked to coreferents. As a result the object appears 
simultaneously in several contexts and can be used by fact extraction rules.

Anchor statements cannot create any contradictions.

6.	 Identification statements
During the extraction process it is often possible to recognize objects which actu-

ally refer to a single real-life entity and should therefore be merged. One obvious ex-
ample is when a person appears several times in a text. At the first stage each mention 
of that person is extracted as a separate information object, but we can merge them 
subsequently if their surnames and names match.

Two objects can be merged into one via identification statements. After these 
statements are added to the bag, all statements about the merged objects are reas-
signed to this newly created composite object.

Identification statements can contradict to other types of statements. For ex-
ample, classes of two objects can be incompatible with each other or a value of some 
property might exceed its maximum cardinality restriction that is set in the ontology. 
There is also a possibility of other, more complex inconsistencies.

7.	 Functional restrictions
In some cases it is convenient to impose a restriction upon a group of objects. 

We can add a function that accepts identifiers of information objects and some con-
stant values (e.g. identifiers of parse tree nodes) as input and returns a Boolean value. 
A function must be true when it is added to the bag. After it has been added no state-
ment that would make the function false can enter the bag.

Figure 1 contains schematic diagrams of all statements types available in our system.
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Fig. 1. Types of statements used in the information extraction process. 
Diamonds represent information objects (individuals), ellipses represent 
classes (or concepts) and rectangular boxes represent parse tree nodes

As mentioned above, our statements can be dynamic, i.e. they can depend 
on other statements. It is important to note that this feature can lead to contradictions 
caused by the dependent statements rather than the statement being added at the mo-
ment. That fact posed certain difficulties to the realization of an algorithm that emu-
lates the bag of statements. However, all these issues were subsequently addressed.

Most of the consistency checking is performed when statements are added to the 
bag. However some tests can only be conducted after the information extraction pro-
cess is over. For instance, we cannot know if some property meets minimum cardinal-
ity requirement until all the rules are executed. After the extraction process is com-
plete and before the bag of statements is converted into an annotated RDF graph 
we also filter some auxiliary information (e.g. auxiliary objects or properties).

Now that the reader has a relatively complete picture of the way information 
is stored during the extraction process, we proceed to the description of the mechanism 
that implements the extraction rules and produces statements on information objects.

1.3.	Information extraction rules

Information extraction process is controlled by the production rule system. There 
are two types of rules in the system: parse subtree interpretation rules (or simply in-
terpretation rules) and identification rules. Both types of rules are described further 
in the article. Since interpretation rules are much more frequent, whenever we do not 
specify the exact type of a rule the reader should assume it is an interpretation one.

During the development of the extraction mechanism several goals were pur-
sued. In the first place, our intention was to exploit such advantages of the production 
rule systems as modularity [11] and separation of knowledge from the procedure. 
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We particularly wanted to relieve the developers from the necessity to order the 
rules9. Secondly, we intended to implement an efficient deterministic inference model. 
Speaking in terms of traditional production systems [5] we can define parse tree for-
est and the bag of statements as our knowledge base, while the extraction process 
itself can be described as a forward chaining inference process. Generally speaking, 
there is no guarantee that the rule execution will not loop10. However, if the cycle 
occurs in the real rule system that definitely means that there is a logical mistake 
in some rule. Usually, it can be easily found and corrected, since there is a built-in heu-
ristics in the algorithm allowing us to detect rules which caused cycles.

Before we proceed to the detailed discussion of extraction rules we have to point 
out that a full description of the extraction rule syntax is well beyond the scope of this 
article. We will limit ourselves to a schematic outline and examples.

1.3.1.	 Parse tree interpretation rules
Interpretation rules enable us to specify fragments of parse trees, which must 

be discovered for certain logical statements to become true. A rule is basically a pro-
duction with syntactic-semantic tree patterns in its left-hand side and some expres-
sions that make statements on information objects in the right-hand side.

Parse tree templates (hereinafter tree templates) are formulas each individual 
element of which checks some property of a tree node (e.g. presence of a certain gram-
meme or semanteme, belonging to a certain semantic or lexical class, occupation 
of a certain deep or surface slot and many other properties available from the parsing 
results). Apart from the basic logical operators (conjunction, disjunction, negation) 
tree templates allow us to check relative position of nodes within a tree. For instance, 
we can check if a node is in a subtree of another node.

In most cases tree templates describe the interconnected segments of syntactic-
semantic trees (i.e. subtrees). The only exception is a special anaphoric condition. 
This condition allows us to search nodes in the left context of a certain node com-
pletely ignoring tree structure and surpassing boundaries of a single sentence. Such 
rules are used for coreference resolution, especially in cases of nominal anaphora.

Tree templates can contain conditions that require an information object to be an-
chored to a certain node of a parse tree. We call such requirements positive object 
conditions. Our rules also support negative object conditions that require a node not 
to have an object of a certain type attached to it. We already mentioned object condi-
tions in the part about anchor statements.

9	 One particular example of quasi-production language that does not comply with this re-
quirement is Jape ([8]). Jape requires setting the order in which groups of production rules 
(or phrases) are executed explicitly. During their execution rules within a group do not have 
the access to each other’s results. In the process of development of such rules it often occurs 
that the rules which create an object of a certain type are executed after the rules which ac-
cept such an object as their input. Moreover, it is not possible to reorder the rules because 
rules from the first group might also use some objects created by the second group. The only 
solution to this problem is to launch the same groups of rules several times. However, this 
solution is far from being ultimate since it artificially limits the number of recursion steps.

10	 It is possible to create a set of rules that will loop infinitely.
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When we add a statement to the right-hand side of a production it is often neces-
sary to refer to the nodes of the subtree that matches the template in the left-hand side 
and sometimes to the information objects attached to these nodes. For that purpose 
we introduce names (or variables) for separate parts of tree templates. If a certain 
subtree matches a template, its nodes can be accessed via the variables assigned to the 
template parts. These variables can be used in the right-hand side of a production 
to make statements on objects. In some cases they can also be accessed in the left-
hand side (in order to create a complex condition that checks for certain dependence 
between several tree nodes). A variable can be either a set variable or a unique one. 
A set variable can be associated with several nodes, while a unique variable can only 
hold one node11 as its value.

Fig. 2. An example of a rule performing Person extraction. The rule deals 
with the case where a person is mentioned with a nobiliary prefix

11	 There are parts of tree templates that can never match more than one node of a parse tree. 
These parts can be determined during the template compilation. Variables attached to these 
parts are declared unique.
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The second example (Figure 3) shows a fragment of a rule (only part of its right-
hand side is shown), in which a positive object condition is used. This rule demon-
strates a way to add more information to the properties of already existing (i.e. previ-
ously created) objects. The rule deals with cases where a person has middle names 
(Albus Percival Wulfric Brian Dumbledore).

To access an information object that matched a positive object condition we use 
a special notation “X.o” where X is the name of the unique variable assigned to the 
node at which the condition was introduced. The variable X has to be unique since each 
time we process the object-condition during the interpretation of the rule we need 
to know the exact tree node the information object must be anchored to.

Figure 2 demonstrates an example of a rule that performs person extraction. 
This particular rule deals with the case where a person is mentioned with a nobiliary 
prefix (von Bismark, da Silva etc). Square brackets define a child node. The left-hand 
side of the rule contains two variables: von and this. The right-hand side of the rule 
makes statements which address these variables.

Fig. 3. An example of a rule performing Person extraction. 
The rule deals with the case where a person has middle names

1.3.2.	 Identification rules
Identification rules are used to merge (unite) a pair of objects. An identification 

rule is basically a production with object conditions for two objects in the left-hand 
side. If a pair of objects fulfils these conditions, the objects are merged into one. The 
right-hand side of an identification rule is omitted because it is always the same: 
a statement that the two objects are identical (an identification statement).

We use three types of conditions in the identification rules. Conditions of the first 
type describe the properties of the objects separately, while those of the second and the 
third allow to impose restrictions on both objects simultaneously (first and foremost, the 
intersection of values of certain properties). Conditions of the first type are written in the 
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same syntax as the object conditions in the interpretation rules. Conditions of the second 
type are formulae with property intersection statements as basic element and conjunction 
and disjunction as logical operators. Such formulas can efficiently filter the number of po-
tentially identical objects. Conditions of the third type are functions written in a JavaScript 
extension [7]. If such a function is present, the rule will only be applied if it returns true.

A significant difference of identification rules from interpretation rules is that the 
former can operate only with information objects and have no access to parse tree nodes. 
We assume that all the information necessary for the identification should be stored within 
the properties of objects (including auxiliary properties unavailable to the end user).

An example of an identification rule is shown in Figure 4.

Fig. 4. An example of identification rule for Person object

The sample rule above contains all three types of conditions available in the 
identification rules: object conditions (check that the objects belong to class Person), 
intersection checking (two intersection statements connected by a conjunction opera-
tor) and a simple script function.

Now that all the necessary notions have been introduced we can proceed to the 
description of the information extraction algorithm.

1.4.	Information extraction algorithm

While describing the information extraction algorithm we use the generic term ‘match-
ing’. By this term we mean both a match of a tree template in an interpretation rule with 
a segment of an actual parse tree and a match of an identification rule with a certain object.
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A matching of a tree template with a segment of a tree can be represented as a pair 
<r, Vr>, where r is the unique identifier of a rule and Vr is a set of mappings where

•	 Each set variable of a rule r is associated with a set of syntactic-semantic tree nodes.
•	 Each unique variable is associated with precisely one node.
•	 Each unique variable with a positive object condition holds an information object.

It is important to point out that finding a matching is a sufficient condition for the 
right-hand side of the rule to be converted into a set of statements.

For identification rules a matching is a triple <r,o1,o2>, where r is the identifier 
of a rule and o1 and o2 are the information objects. These objects correspond to the first 
and the second object condition respectively. As in the interpretation rules, if there 
is a specific matching found for an identification rule, it becomes possible to process its 
right-hand side, i.e. to make an identification statement about the two objects.

The information extraction algorithm has the following steps:
1.	� Analyze the input text with the Compreno parser to get a forest of syntactic-

semantic parse trees.
2.	� Find all the matchings for the interpretation rules that do not have object 

conditions.
3.	 Add the matchings to the sorted match queue
4.	 If the queue is empty, terminate the process.
5.	 Get the highest priority matching from the queue
6.	� Convert the right-hand side of the corresponding rule into a group of state-

ments.
7.	 Try to add the statements to the bag.
8.	 If failed, declare matching invalid and go to step 4.
9.	 If succeeded, initiate new matchings’ search.
10.	 If found, add new matchings to the queue. Go to step 4.

Fig. 5. Schematic representation of the information extraction process
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Some parts of the above algorithm need to be described more thoroughly. Steps 
2 and 9 are performed with the help of a special matching mechanism. This mecha-
nism can retrieve all the matchings for the rules without object conditions. It also con-
stantly monitors the contents of the bag of statements. Every time step 7 is performed 
successfully and new statements get into the bag, the mechanism takes them into ac-
count and, if necessary, generates new matchings for the rules that do contain object 
conditions. These new matchings can be created both for the rules that have already 
been matched before and for those which remained unmatched until that moment. 
The former occurs when an object condition of a certain rule is matched by more than 
one object. In this case each object is matched in a separate matching.

The implementation of the matching mechanism is relatively complex. For instance, 
it has a built-in bytecode interpreter for the compiled rules, a system of indexes for the syn-
tactic-semantic trees, a module for tracking changes in the bag of statements and several 
other features. Full-length description of this mechanism is beyond the scope of the paper.

It is also important to explain the way the queue of matchings is sorted at the 
third step. In some cases developers can set the order of rules, i.e. there is partial or-
der over the whole set of rules. Of any two rules one can be given priority over the 
other. It means that if both rules are ready to be applied, the rule with the higher prior-
ity should go first. For convenience reasons we also support group ordering of rules. 
If group A was given priority over group B, then each rule belonging to group A has 
higher priority than one belonging to group B. Partial order relation is transitive. Cor-
rectness of partial order is checked every time a system of rules is compiled. If loops are 
detected, compilation fails and the user receives an error message. The order of match-
ings in the queue is always consistent with the partial order set within a system of rules.

This approach differs significantly from those with consecutive execution of rules, since 
partial order only determines the priority of rules and does not prevent repeated execution.

It is easy to see that the described algorithm does not consider alternatives. 
If a group of statements derived from some matching is inconsistent with the bag 
of statements in its current state, the matching is simply dismissed. We can afford 
to use this ‘greedy’ principle because our parser performs word-sense disambiguation, 
so we rarely ever have to hypothesize about a node. There are some exceptions like 
words unknown to the parser, but for such cases we have special methods of dealing 
with these words and incorporating them in our model.

2.	 Evaluation

We tested our system on the texts that were manually annotated with name enti-
ties for the 6th Message Understanding Conference (MUC-6) held in November 1995 
[6]. Today the MUC-6 data set is considered one of the main evaluation benchmarks 
for named entity recognition.

The MUC-6 corpus contains 318 manually annotated Wall Street Journal articles 
dating from January 1993 to June 1994. Selection of the articles was not random since 
they were also used for the Scenario Template task which had three specific scenarios: 
‘aircraft order’, ‘labor negotiations’ and ‘management succession’ [13].
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These texts were annotated with information objects of standard types: named 
entities (persons, locations and organizations), temporal expressions (mentions 
of specific time or dates) and numerical expressions (money and percentages). For 
the purposes of the conference all the articles were divided into training and test sub-
corpora. The final test corpus used for the named entity recognition task contained 
30 articles.

Compreno does not need a training corpus, and therefore all 318 articles were 
used as a test corpus.

2.1.	Entity types used for evaluation

During the evaluation we tested the extraction of the following types of infor-
mation objects: Person, Location, Organization, Time, Date, Money. There are about 
1500 productions in our system created to extract these kinds of entities.

The basic principles of annotation for Persons, Locations, Organizations, Dates 
and Money used in the MUC-6 corpus are very similar to those used in our model. 
Some exceptions are shown further in the article.

Annotation standards for Time in the MUC-6 corpus differ greatly from these 
in our model. Nevertheless, we decided to try and compare our results for Time ob-
jects with MUC gold standard anyway.

However, we did not do any tests for Percentage entity, since within our model 
it is not viewed as a distinct type.

It is also worth taking into consideration that MUC-6 gold standard allows alter-
native annotation variants. These alternatives are added to entities as their attributes 
(3) “ALT” (<TIMEX TYPE="DATE" ALT="1987">all of 1987</TIMEX>.

When we compared our results (i.e. the automatic markup) to the gold standard, 
this attribute was ignored.

2.2.	System enhancement

To make the comparison of our automatic markup with the gold standard fair 
and correct we had to modify our basic system of rules. The modification had been 
driven by the fact that in some cases our ideas of how an entity should be annotated 
and where should its boundaries lie differed from those of the MUC-6 annotators.

For instance, we had to ignore anaphoric references to objects of any types in the 
process of comparison. We also made some separate alterations for each type of entity. 
All the changes were generalized and none of them had anything to do with specific 
individual objects or with extraction errors that occurred.

Locations. For information objects of this type we had to restrict the extraction 
of attributive mentions (“Japanese bank”, “Boston University”). We also restricted 
some location types that were completely absent from MUC-6 (planets, airports etc). 
We also excluded some keywords from annotations since they were not annotated 
in the gold standard (state of Michigan, city of Hiroshima).
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Person. The rules for person extraction were changed so that honorifics (“Mr”, 
“Ms”, “Sir”,…) were not included in the annotation. We also forbade extracting per-
sons on the names of the saints (St Paul).

Organization. The rules that extracted abstract governmental organizations 
(government, police etc) were disabled.

Money. The rules were altered so that the words meaning the approximate 
amount (around $1.6 billion) were excluded from the annotation.

Time and dates. The rules that extracted relative time points and periods (this 
year, today, for two years) were disabled.

2.3.	Evaluation results

The comparison of the test automatic markup with the gold standard showed 
following results:

Table 1. Evaluation results

Type of entity Precision Recall F-measure

All entities 0.853 0.813 0.832
Money 0.947 0.933 0.940
Person 0.700 0.887 0.783
Location 0.936 0.806 0.866
Organization 0.767 0.639 0.697
Date 0.941 0.880 0.910
Time 0.674 0.573 0.620

These results are lower than the numbers shown by statistical systems 
on MUC-6 original test corpus of 30 texts (the F-measures of many systems that 
participated in the contest were higher than 90% and the winner reached 96.42% 
in F‑measure). However it is worth noting that our system was not specifically trained 
on MUC-6 corpus texts or any other WSJ articles. We also did not make any deliber-
ate changes in our model (apart from the technical ones described above) that could 
artificially improve performance on this particular set of texts. It would be correct 
to assume that our system was put in position of a statistical entity extractor trained 
on a completely different corpus.

Error analysis demonstrated that approximately 60% of errors were the errors 
of the Compreno parser, 20% occurred due to flaws in the extraction rules and the 
MUC-6 corpus inconsistencies accounted for the remaining 20%. These results show 
that the system has a significant potential for further development, especially since 
there are hopes to improve the quality of the syntactic-semantic parser.

After testing our system on the MUC-6 corpus we also conducted additional tests 
on the CoNLL corpus [8]. During these tests no settings were modified and no changes 
were made whatsoever. The resulting F-measure was 0.75. This allows us to make a pre-
liminary conclusion that our system is more resistant to the replacement of one corpus 
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with another than systems based on machine-learning approaches. In the near future 
we intend to conduct a more extensive performance evaluation on several other corpora.

We do realize that the tests we conducted are insufficient to provide complete 
evaluation of the system performance, especially since the spectrum of its applica-
tions is much wider than named entity recognition. This evaluation was the first and 
relatively easy step, which brought a lot of valuable information about the system 
as a whole even though we were only assessing one particular subtask. Later this year 
we intend to get some results that demonstrate the quality of fact extraction by our 
system (we are currently in the process of annotating a test corpus).

Conclusion

In this paper we described an information extraction mechanism based on a pro-
duction rule system. The rules are applied to the results of full syntactic-semantic 
analysis performed by the Compreno parser. The output of the extraction mechanism 
is an RDF graph consistent with domain ontology and augmented with information 
about objects’ annotation (markup).

We also presented the idea of storing the extracted information as a set of dy-
namic logical statements. We described two types of declarative extraction rules: 
interpretation rules that interpret subtrees of syntactic-semantic trees and identifica-
tion rules that merge information objects. We gave schematic description of the infor-
mation extraction algorithm.

A considerable advantage of the system we have created is that a developer 
of rules does not have to set the order of their execution. Rules are executed in arbi-
trary order if there is data that matches their left-hand sides. However, if the necessity 
appears, a developer can set partial rule order.

In our descriptions we attempted to make the reader familiar not only with the 
core structure of the mechanism, but also with particular solutions which help us ad-
dress common problems of information extraction from natural language texts.

Finally, we presented the results of the evaluation tests we conducted on the 
MUC-6 manually annotated corpus. Our system demonstrated relatively good per-
formance with no prior adjustments made. Additional tests on the CoNLL corpus al-
low us to make a preliminary conclusion that our system is not dependent on a par-
ticular corpus (like statistical ones often are) and remains efficient after the corpus 
is changed. To confirm this conclusion further tests are required and we plan to con-
duct them in the nearest future. After these tests are performed we intend to publish 
a new article focusing on the task of fact extraction.
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